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RL"\J From genotype to phenotype

Geneticrisk factors Disease
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5 eQTLGen Consortium: a blood bulk pipeline and eQTL mapping resource (phase 1)
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31,684 blood samples

19,942 genes studied > 16,987 cis-eQTL genes = cis-eGenes

11 million SNPs (MAF 2 1%) Challenge 1: eQTLs are cell-type- and context-dependent

Vésa and Claringbould et al.
Nature Genetics, 2021



Oelen et al.

Nature Communications, 2022
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Single-cell data provides the resolution needed to pinpoint the cell type and
context at which eQTL effects take place

From GWAS SNP-to-gene link
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‘_(5’\' Bulk-based datasets have larger eQTL discovery power than single-cell

Number of eGenes in matched
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Cuomo et al.
Genome Biology, 2021



5 eQTLGen Consortium: a blood bulk pipeline and eQTL mapping resource (phase 2)

Phase 2

p Trans-eQTL.:
eQTLGen

o\ o Consortium o
\ eqtlgen.org 2 I I
5[

o SNP | Gene GG GC CC
(distance > 1Mb)

r

43,301 blood samples Genome-wide trans-eQTL mapping
19,942 genes > 58,956 frans-eQTLs (74.6% of the genes)
11 million SNPs (MAF 2 1%) Challenge 2: difficult to distinguish true regulatory

effects from cell type composition effects

Urmo Vosa — University of Tartu
Robert Warmerdam — UMCG



g Genetically-driven cell type composition effects may present themselves as false

QY] trans-eQTLs

What is happening in reality: What is measured in bulk data:
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S sc-eQTLGen consortium: single-cell eQTL meta-analysis to tackle these challenges

Cohort 2: Single cells:
[ Cohort 1: Single cells: |
Single-cell eQTL (()SZQ‘ / © )
Consortium &
cell
Phenotype Genotypes Single cell >
data omics
J
Phase 1:
14 Cohorts

2,032 Donors
6 Major PBMC cell types

Van der Wijst et al.
elLife, 2020



‘5«' Overview sc-eQTLGen freeze 1 datasets

DS Name / Contributor Individuals Cells per Ind. Technology
OneK1K 1,017 1,200 3’-10X
Burkina Malaria 178 500 3-10X
SLE 170 4,935 3’-10X
Franke multiome 118 2,500 3-10X
Cytoimmgen 117 1,000 3’-10X
UMCGV2 98 1,000 3’-10X
OASIS 91 8,374 5-10X
CSF 73 1,200 3’-10X
UMCGV3 47 1,000 3’-10X
ARMS 45 318 SS2
Wijst 40 500 3’-10X
300BCG 38 1,298 3’-10X

Total 3.7 million
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o& Single-cell eQTLGen pipeline

Working Group 1: Quality Control ’ Working Group 2:

Cell Type Classification
E»

Genotype imputation

ﬁorking Group 3: \
eQTL mapping and meta-analysis

2\

SNP eGene

Demultiplexing Quality control Cell type classification eQTL mapping Meta analysis
Separate individuals Remove dead cells + Separate cells and Find cell-type specific Combine summary
scRNAseq data Doublets assign labels

\ eQTLs statistics /

Ease of use:
Standardised harmonization
Pipelines built in snakemake

Software provided in singularity images

Van der Wijst et al.
elLife, 2020
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o~ Workgroup 1: Preprocessing and quality control

ﬁorking Group 1: Quality Control

Genotype imputation

R
90 Demultiplexing Quality control
Separate individuals Remove dead cells +
scRNAseq data Doublets

Marta Melé Martin Hemberg
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o~ Workgroup 1: Preprocessing and quality control

1. Impute SNP genotypes
Reference: 1000 Genomes high coverage build hg38
Minimac imputation software

2. Demultiplex and remove doublets
Demuxafy pipeline

3. Calculate QC metrics for filtering threshold selection
Number of UMI and mitochondrial RNA percentage

Neavin et al. Genome Biology, 2024
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) Workgroup 2: Cell type classification

’ Working Group 2:

Cell Type Classification

Cell type classification

Separate cells and
assign labels

\_

Joseph Powell Ahmed Mahfouz



s

\

S

Azimuth

Workgroup 2: Cell type classification
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Concordance of cell type predictions

2 8.8
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of cells
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30

Azimuth and Hierarchical scPred
approaches

Combining cell type prediction
removes low quality cells

~80% of the cells remain

Hao et al. Cell, 2021
Alquicira-Hernandez et al. Genome Biology, 2019
Michielsen et al. Nature Communications, 2021
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o~ Workgroup 3: eQTL mapping and downstream analyses

ﬁ)rking Group 3: \
eQTL mapping and meta-analysis

e

SNP eGene

eQTL mapping Meta analysis
Find cell-type specific Combine summary

\ eQTLs statistics /

Privacy-sensitive data: ‘Bring
the algorithm to the data’

Monique van der Wijst Marc Jan Bonder
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o~ Workgroup 3: eQTL mapping and downstream analyses
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Working Group 1: Quality Control
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Genotype imputation
Demultiplexing

Separate individuals
scRNAseq data

Van der Wijst et al.
elLife, 2020

Quality control

Remove dead cells +
Doublets

Single-cell eQTLGen pipeline (modulary)
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“ Consortium
+43K samples

g

Blood

Single-cell eQTL
Consortium
+3k samples

Transferability of the framework to other tissues

Bulk

Single-cell

MetaBrain
+10K samples

Brain

Single-cell MetaBrain
Consortium
+1k samples
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S Conclusions

» Genotype-to-phenotype associations can be interpreted using QTL studies.

« Combining single-cell and bulk-based QTL mapping provides the best of
both worlds: maximum eQTL discovery power and the highest cellular and
context-specific resolution.

* To do this in the best possible way, consortia in which data is combined
after preprocessing it in a harmonized manner are essential.



‘_(.5’\' Outlook for sc-eQTLGen

» Expand to higher resolution cell types

* Go beyond only unstimulated blood cells (as in current data freeze 1):
integrate all samples in one meta-analysis (healthy and disease, unstimulated
and stimulated, etc) using a topic-/module-based QTL mapping approach
[Popp et al. Cell Genomics, 2024].

« Assess the impact of donor phenotypes on eQTL effect

* |dentify the upstream regulators of SNPs through co-expression QTL
mapping and facilitate their interpretation using single-cell multiomics data

Will continue to add more datasets and increase
sample size in following phases, consider joining!

eqtlgen.org/single-cell.html



https://eqtlgen.org/single-cell.html
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