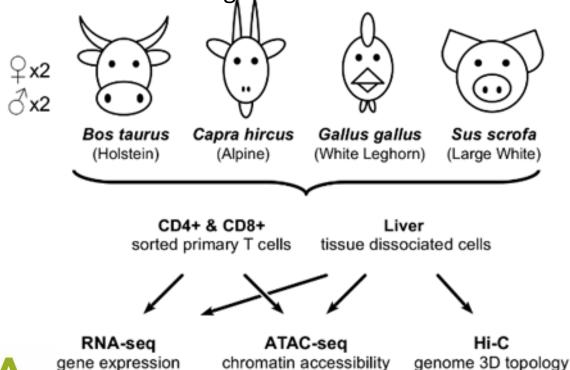


Fr-Agencode: an update

- S. Foissac, S. Djebali, Andrea Rau, S. Lagarrigue,
- H. Acloque, E. Giuffra, the FR-AgENCODE group

Plant and Animal Genome XXVII Conference – FAANG workshop – January 11th 2019 – San Diego (USA)



FR-AgENCODE (www.fragencode.org)

A multi-species pilot FAANG project:

- *Realize an exhaustive FAANG sample collection from four main farm species
- ❖Implement core FAANG assays on tissue dissociated cells (liver) and sorted primary cells (CD3+CD4+, CD3+CD8+ T cells)
- * Compare whole transcriptome chromatin accessibility genome 3D topology for comparative analyses of genome organization and functioning.

- Funded by INRA, SelGen metaprogramme (http://www.selgen.inra.fr/) between 2015-17
- Coordinated by Elisabetta Giuffra and Sylvain Foissac

FR-AgENCODE (www.fragencode.org)

Federation of 14 research labs & facilities

Sampling and assays	□ Data analysis		
Hervé Acloque	Philippe Bardou		
Cécile Berri	Cédric Cabau		
Fany Blanc	Elisa Crisci		
Sophie Dhorne-Pollet	Thomas Derrien		
Françoise Drouet	Sarah Djebali-Quelen		
Diane Esquerre	Sylvain Foissac		
Stéph <mark>a</mark> ne Fabre	Christine Gaspin		
Joël Gautron	Ignacio Gonzalez		
Adeline Goubil	Christophe Klopp		
Sonia Lacroix-Lamandé	Sandrine Lagarrigue		
Fabrice Laurent	Sylvain Marthey		
Florence Mompart	Maria Marti-Marimon		
Pascale Queré	Raphaelle Momal-Leisenring		
Michèle Tixier-Boichard	Kylie Munyard		
Gwenola Tosser-Klopp	Kévin Muret		
Silvia Vincent-Naulleau	Andrea Rau		
	David Robelin		
	Magali San Cristobal		
	Nathalie Vialaneix		

Matthias Zytnicki

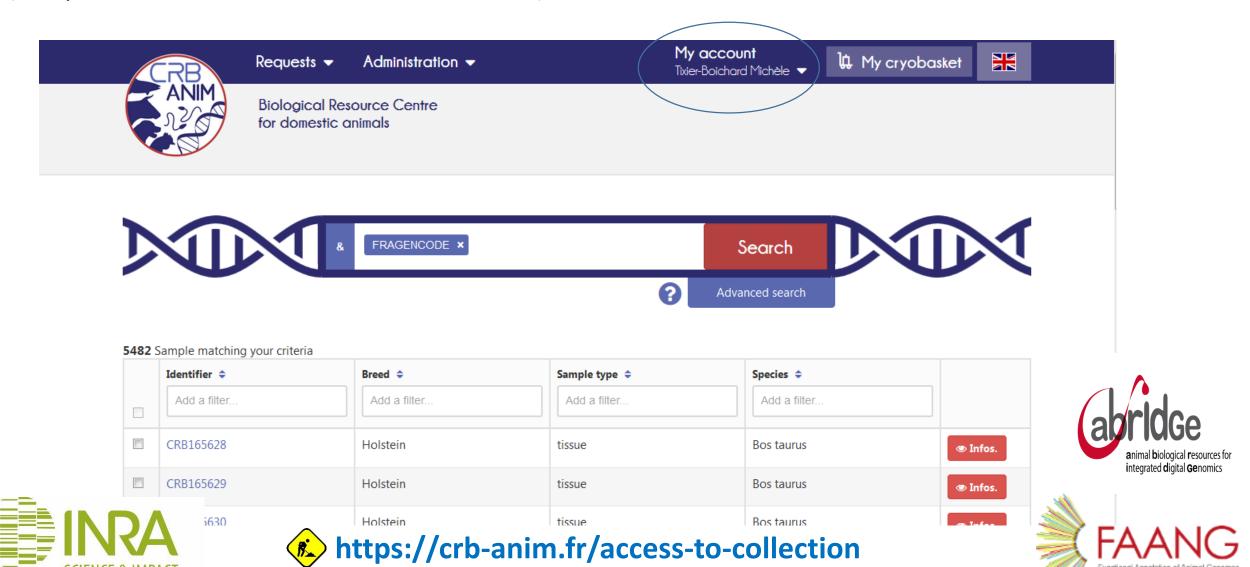
FR-AgENCODE (www.fragencode.org)

Main results

- 1. 5,482 BioSamples entries available at the INRA biorepository
- 2. Improvement of the reference annotations with thousands of new genes and transcripts, including IncRNAs Analysis (analysis of small RNA-seq dataset still in progress).
- 3. Extensive chromatin accessibility profiling (ATAC-seq) pointing to potential regulatory sites.
- 4. 3D cartography data of the genome (Hi-C), including Topologically Associating Domains (TADs) and A/B compartments.

Foissac S, Djebali S, Munyard K, Villa-Vialaneix N, Rau A, et al. 2018. Livestock genome annotation: transcriptome and chromatin structure profiling in cattle, goat, chicken and pig. bioRxiv. https://doi.org/10.1101/316091 (submitted)

Muret K, Klopp C, Wucher V, Esquerré D, Legeai F, et al. 2017. Long noncoding RNA repertoire in chicken liver and adipose tissue. Genet. Sel. Evol. 49:6



1) 5,482 Samples available at the INRA biorepository

(as part of CRB-Anim collection)

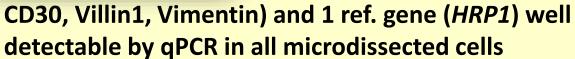
1) Subsets of cryoconserved tissue samples were embedded in OCT for laser microdissection

RNA isolation of

Microdissected crypts

chosen cell types

No RIN Value (non detectable)



Chicken intestine

RIN: 8.50

Microdissected enterocytes

No RIN Value (non detectable)

M. Tixier-Boichard with C. Bevilacqua and other collab.

Connecting FAANG protocols to the preparation of ISO technical standards

Draft on technical specifications in preparation (#20388) on:

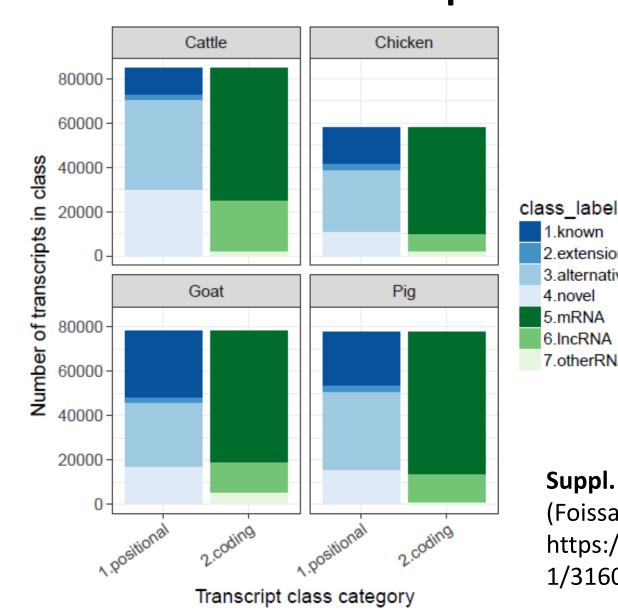
 The collection, processing, transportation and storage requirements for animal biological materials

By: ISO (International Standard Organisation), Working group 2 of Technical Committee #276 in Biotechnology (led by China National Gene Bank)

Aims: Improving reliability and reproductibility of research, by providing a reference for the quality assessement of animal biological materials from time of sampling until storage in a biobank

2) "FR-AgENCODE transcripts" set: between 58,000 and 85,000 transcripts identified, depending on species

	Reference transcripts			FR-AgENCODE transcripts		
Species	All	Expressed				
	All	#	% of total	#	mRNAs	IncRNAs
Cattle	26,740	16,100	60.2	84,971	59,801	22,724
Goat	53,266	34,442	64.7	78,091	64,962	13,864
Chicken	38,118	22,180	58.2	57,817	47,567	7,502
Pig	49,448	29,786	60.2	77,540	63,721	12,587


Table 1 (Foissac et al.; bioRxiv. https://doi.org/10.1101/316091)

 Differential analyses of gene expression in liver and T cells yielded results consistent with known metabolism and immunity functions.

2) Analysis of new transcripts improves and extends gene structure annotation of the four species

"FR-AgENCODE transcripts":

 Distributed into four positional (known, extension, alternative, novel) and three coding (mRNA, IncRNA, otherRNA) classes.

 The « alternative » class (new splice variants of known genes) predominates in all species.

Suppl. Figure 10A

extension 3 alternative

4.novel

5.mRNA

6.IncRNA 7.otherRNA

(Foissac et al.; bioRxiv. https://doi.org/10.110 1/316091)

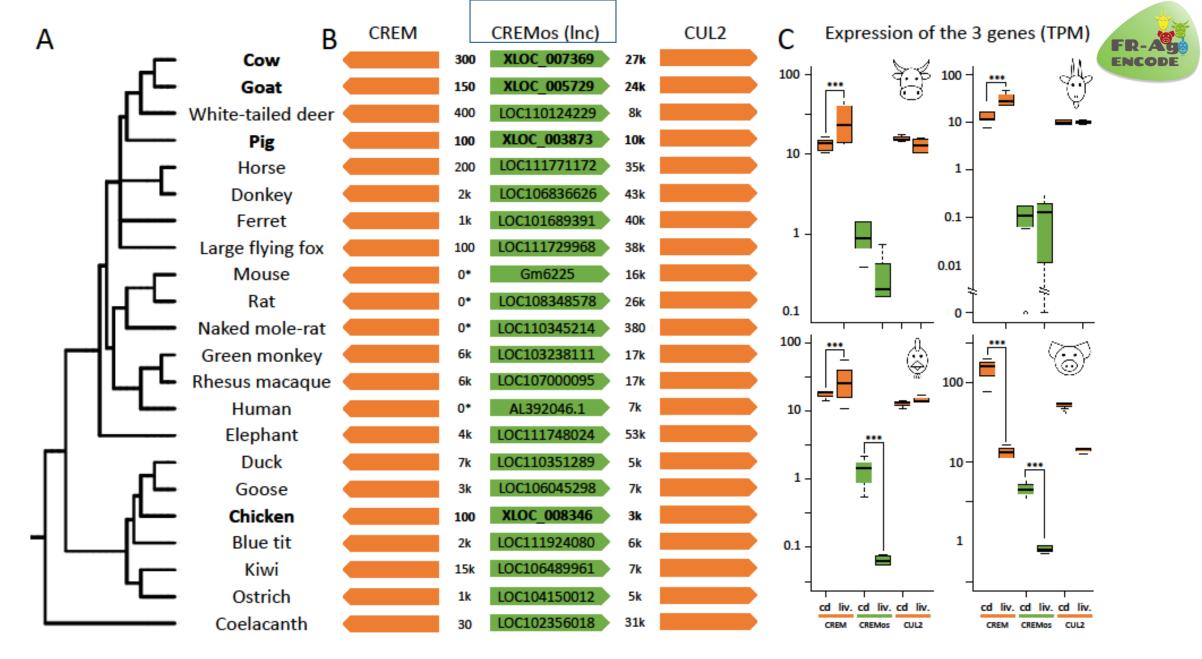


Figure 4 (Foissac et al.; bioRxiv. https://doi.org/10.1101/316091)

An atlas of chicken long non-coding RNAs gathering multiple sources: gene models and expression across more than twenty tissues

Frédéric Jehl*, Kévin Muret*, Maria Bernard*, Diane Esquerré, Hervé Acloque, Elisabetta Giuffra, Sarah Djebali, Sylvain Foissac, Thomas Derrien, Tatiana Zerjal, Christophe Klopp\$ and Sandrine Lagarrigue\$

Sunday, January 13th talk: **Non-coding RNA workshop**

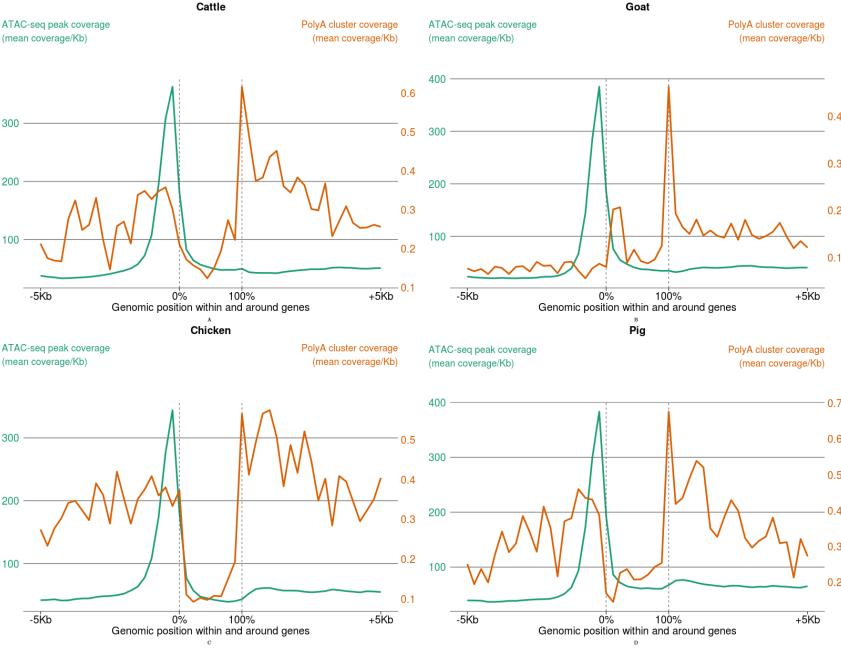
Poster board number: PO0423

- ✓ A large catalogue of chicken lncRNAs at the gene level by gathering different sources

 4,640 from V94 ensembl => 30,084 lncRNAs
- ✓ A rough annotation of all these genes, based on their expression pattern across 21 chicken tissues and their position relative to the nearest coding gene

Perspective:

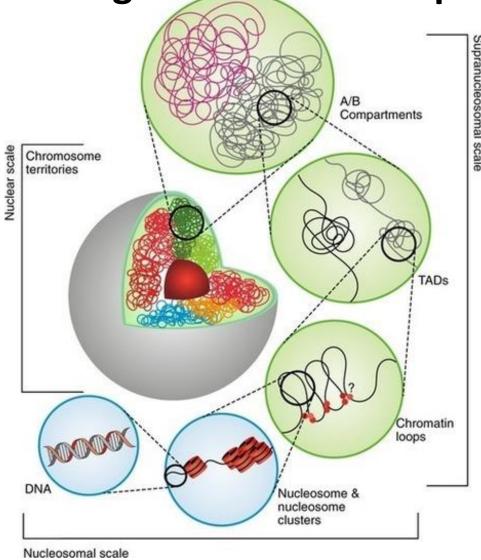
Will use these data to study the genetic component of feed efficiency in layer chicken



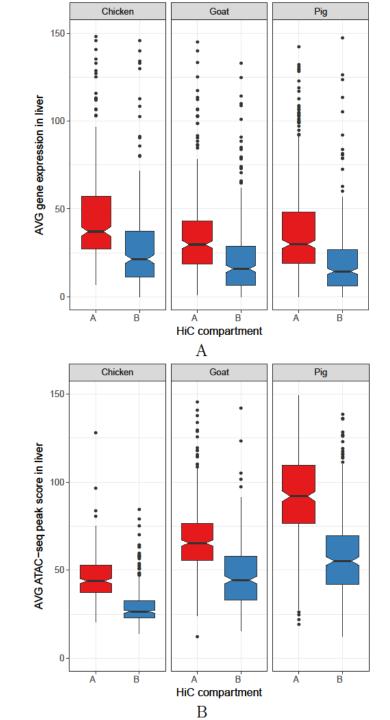
AGRO

CAMPUS

3) Chromatin accessibility profiling



- Between 26,000 (pig, liver)
 and 111,000 (pig, cd8) ATAC seq peaks per tissue; most
 either intronic or intergenic.
- Average peak size 600 bp for all species, except for chicken (<500 bp).
- ATAC-seq peak distribution within and around reference genes showed a clear signal at the TSS for all species


Figure 5 (Foissac et al.; bioRxiv. https://doi.org/10.1101/316091)

4) Genome-wide 3D interaction maps by Hi-C of the genome of three species (liver)

 High consistency with gene expression and chromatin accessibility data

Figure 8 (Foissac et al.; bioRxiv. https://doi.org/10.1101/316 091)

From www.nature.com - July 30, 2018 6:07 PM

All FR-AgENCODE datasets are shared in FAANG DCC (http://data.faang.org)

Dataset ID	Title	Species	Archive
PRJEB27455	Transcriptome profiling of liver and T cells in 4 livestock species by the FAANG pilot project FR-AgENCODE	Bos taurus, Gallus gallus, Sus scrofa, Capra hircus	ENA
PRJEB27111	Chromatin accessibility profiling of liver and T cells in 4 livestock species by the FAANG pilot project FR-AgENCODE	Bos taurus, Gallus gallus, Sus scrofa, Capra hircus	ENA
PRJEB27364	High-throughput chromosome conformation capture of liver cells in 4 livestock species by the FAANG pilot project FR-AgENCODE	Sus scrofa, Gallus gallus, Capra hircus	ENA

Implement technology and analysis pipelines improvements within new FAANG-related research programs

✓ **GENE-SWitCH** (H2020, SFS30 Scope A) was selected and is now in negotiation with the EC The three **selected SFS30 projects (GENE-SWitCH, BOVREG** and **Aqua-FAANG)** are committed to efficient clustering within FAANG.

In addition:

Collaboration to a project proposal "Hunting for determinants of immune capacity in pigs: a step forward in system immunology" (PI: O. Distl, Germany; co-PIs: C. Rogel-Gaillard, S. Hammer). Work will include functional genome annotations focused on SLA and immune-related traits.

