An update on the FAANG pilot project **FR-AgENCODE**

S. Foissac, S. Djebali, Andrea Rau, S. Lagarrigue, H. Acloque, E. Giuffra, and the FR-AgENCODE group

INRA - {Jouy en Josas, Toulouse, Rennes} - France

FR-AgENCODE data

Based on an image by Darryl Leja (NHGRI), Ian Dunham (EBI), Michael Pazin (NHGRI)

Overview of FR-AgENCODE analyses

Multi-species single data analyses:

- Expression (**RNA-seq**)
- Open chromatin (ATAC-seq)
- 3D chromatin conformation (Hi-C)

Multi-species integrative analyses:

- Expression + open chromatin + 3D chromatin conformation
- Expression + open chromatin

Quantification, normalization, differential analysis, clustering, ...

RNA-seq identifies many novel transcripts

Species	Genome / Gene annotation	Annotated Transcripts			Number of	Number of
		Total number	Detected*		novel	novel
			#	% of total	detected*	IncRNAs**
Bos taurus	UMD 3.1 / Ensembl 90	26,740	16,100	60.2	65,539	8,296
Capra hircus	CHIR_ARS 1 / NCBI	53,266	34,442	64.7	38,197	1,224
Gallus gallus	GalGal 5 / Ensembl 90	38,118	22,180	58.2	34,852	3,504
Sus scrofa	SScrofa 11.1 / Ensembl 90	49,448	29,786	60.2	39,032	4,778

* with TPM \ge 0.1 in \ge 2 samples / ** with at least 2 exons and classified by FEELnc

Directed, 2 x 150bp, 100 million read pairs / sample

Mapped reads:

- Exonic: 50-80%
- Intronic: 10-20%
- Intergenic: 20% for cattle/chicken, 10% for goat/pig

Differentially expressed genes reflect underlying biology

Two per-gene (TPM > 0.1 in at least 2 samples) differential models:

- Tissue effect, blocking on individuals:

```
expression ~ individual + tissue
```

- **Tissue & tissue-specific sex effects**, blocking on (nested) individuals:

expression ~ sex + tissue:sex + individual:sex

- Generally large differences for liver vs CD4/CD8, smaller differences for CD4 vs CD8 or tissue-specific ♂ vs ♀
- GO (BP) enrichment for genes consistently DE across species:

Cross-species & cross-tissue transcriptome clustering

 Liver clearly separated from CD4/CD8 cells, and species cluster within cell types (liver vs T-cells)

ATAC-seq identifies pertinent regions of open chromatin

Species	Number of ATAC-seq peaks	Genome size	ATAC-seq peak coverage					
Opecies		(bp)	# bp	% of genome				
Bos taurus	104,986	2,670,422,299	80,562,624	3.02				
Capra hircus	74,806	2,922,813,246	57,043,999	1.95				
Gallus gallus	119,894	1,230,258,557	51,000,066	4.15				
Sus scrofa	149,334	2,501,912,388	106,645,814	4.26				
* 50 million read pairs / sample								

- 3 major peak classes: promoter regions (TSS +/- 1kb), intronic, intergenic
- Significant proportion of peaks in ATAC-seq reads found in promoter region (36-66%)
- For all species, peaks close to TSS (+/- 5kb) are most ubiquitous open chromatin

ATAC-seq sample clustering: Liver vs immune cells, \bigcirc vs \bigcirc in immune cells

- PC1: liver versus CD4/CD8
- PC2 : CD4 vs CD8

- PC1: males vs females (note: absence of liver samples)
 - PC2: CD4 vs CD8

Differential ATAC-seq peaks are more likely to be regulatory

Between-tissue **differential** ATAC-seq peaks have a higher **TFBS density** than nondifferential peaks (Wilcoxon test, p-value < 10⁻¹⁵)

 \rightarrow Differential ATAC-seq peaks are more likely to have a **regulatory** role

Hi-C for 3D genomic structures

Several levels for 3D conformation:

- TADs (Toplogically associating domains)
- Compartments
- Enhancer-promoter interactions
- Liver x 4 animals x 3 species (all but cattle)
- 180 million read pairs / sample
- Predicted CTCF binding sites peak at TAD boundaries </

10

RNA-seq + ATAC-seq + Hi-C consistency

chromosome territory "A

compartments

A compartments: open, expressed **B** compartments: closed, repressed

Global consistency between expression, chromatin accessibility, and chromatin conformation!

Exploring correlation between promoter accessibility and gene expression

Positive AND negative regulatory mechanisms?

- Pattern unique to proximal promoter region (TSS +/- 1kb)
- Promoter peaks negatively correlated with gene expression tend to be wider

Next steps & future work

• More **integrative** analyses:

- Enhancer / gene relationships
- Small RNAs vs long RNAs / open chromatin / HiC TADs

• More **comparative** analyses:

- Evolution of functional elements, in particular regulatory
- Human/mouse element projection to livestock species

- bioRxiv preprint to be submitted in coming weeks
- More tissues, functional validation and link to genotype/phenotype (G/P) data:
 - H2020 project proposal (co-coordinated by E. Giuffra & H. Acloque)

Fr-AgENCODE group

Coordinators

• Management:

0

- o <u>Elisabetta Giuffra</u>
 - <u>Sylvain Foissac</u>
- Sandrine Lagarrigue
- Marie-Hélène Pinard

• Sampling and assays:

- Hervé Acloque
- Cécile Berri
- Fany Blanc
- Françoise Drouet
- Diane Esquerre
- Stéphane Fabre
- Joel Gautron
- Adeline Goubil
- Fabrice Laurent
- Florence Mompart
- Sophie Pollet
- Pascale Queré
- Michèle Tixier-Boichard
- Gwenola Tosser-Klopp
- Silvia Vincent-Nailleau

- Data analysis:
 - Philippe Bardou
 - Cédric Cabau
 - Thomas Derrien
 - Sarah Djebali-Quelen
 - Christine Gaspin
 - Ignacio Gonzalez
 - Christophe Klopp
 - Sylvain Marthey
 - Maria Marti
 - Kylie Munyard
 - Kévin Muret
 - David Robelin
 - Magali San Cristobal
 - Nathalie Villa-Vialaneix
 - Matthias Zytnicki

Thanks for your attention!