

B&DA Committee Bioinformatics and Data Analysis

PAG January 2016

B&DA – progress so far

- Aim: to define standard bfx pipelines for FAANG data
- Group has skyped many times
- We have a Wiki: hosted by EBI
- Sub-groups
 - RNA: RNA-Seq, miRNA-Seq, full length etc
 - ChIP: ChIP pull down of things bound to DNA
 - Methylation: pipelines to identify methylated regions
 - 3D structure: HiC and other methods
- Barriers: lack of data on which pipeline is best; seeking to compare pipelines; seeking suitable datasets

Analysis issues

- Do we want fuzzy or hard pipelines?
 - If we don't use the same pipelines, when we compare data, we will just find pipeline differences
 - However, we don't want to take years finding the perfect pipeline (there isn't one anyway!)
 - Is a single pipeline enforceable?
 - Can we afford for it not to be?

Other committees

- Are we communicating with the other FAANG committees in the right way?
 - Steering committee
 - Animals, Samples and Assays (ASA)
 - Bioinformatics and Data Analysis (B&DA)
 - Communication (COM)
 - Metadata and Data Sharing (M&DS)

Stimulating collaborations

- How do we stimulate integration and development of future collaborative projects?
- How to we facilitate future activities?
- What do we need?
 - Funding?
 - Meetings?
 - Access to compute infrastructure?
 - Access to data?

Impact

- What are translational impacts of FAANG work on animal production and human health by comparative genomics?
- If we do this project correctly, what will be possible in the future because of it?

What is the impact of what we are doing?

REPORTS FROM 4 SUB-COMMITTEES

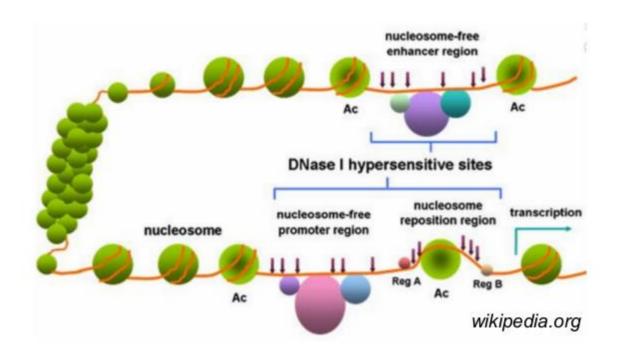
CHROMATIN STRUCTURE

B&DA Committee Bioinformatics and Data Analysis

Chromatin Structure PAG January 2016

Motivation

Gene expression can be regulated by modification of chromatin compaction and 3D distance between loci


=> interest in profiling chromatin structure & genome topology

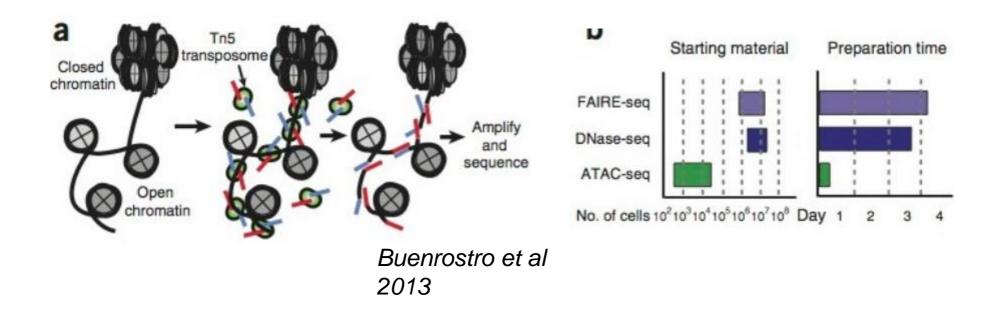
Molecular assays
DNAse-seq, ATAC-seq, Hi-C

Activities of the subcommittee

List available tools and datasets, set up and test pipelines, define QC metrics and standard procedures

DNAse-seq

Targets DNase I hypersensitive sites: open chromatin, regulatory elements, transcribed regions

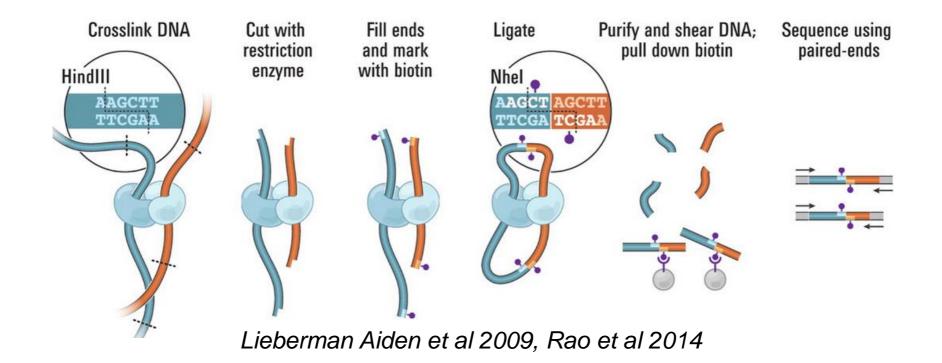

DNAse-seq

- Analysis pipeline ongoing work
- read mapping & trimming (bwa)
- remove duplicates and low-qual (picard, samtools)
- peak calling (MACS2, HotSpot)
- Reference datasets
- livestock: none identified
- model organisms: several available from ENCODE,
- Blueprint, Fantom...

=> build/test pipeline on model organisms data first

ATAC-seq

Transposase-mediated insertion of sequencing adapters in open chromatin simple protocol (no ligation) low requirements of initial material similar to DNAse-seq


ATAC-seq

- Analysis pipeline ongoing work
- read trimming (trim_galore/cutadapt)
- read mapping (bowtie2)
- remove duplicates and low-qual (picard, samtools)
- peak calling (MACS2)
- Reference datasets
- model organisms: human GM12877 cells
- (from Buenrostro et al 2013)
- livestock: none publicly available but several in production in pig, cattle, chicken and goat (FAANG French pilot project FR-AgENCODE)

=> preliminary results: poster P0420

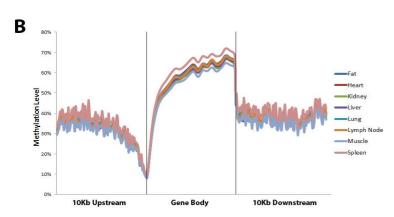
Hi-C

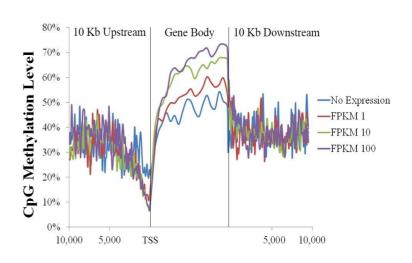
- genome-wide detection of proximal pairs of loci in 3D nuclear space
- generates contact matrix
- detects inter- and intra-chromosomal interactions

Hi-C

- Analysis pipeline ongoing work
- read mapping and trimming (bowtie2, cutadapt)
- remove duplicates, low-qual and inconsistent mapping (samtools)
- generate and normalize contact matrix (ICE)
- identify Topologically Associated Domains
- workflow implementation: HiC-Pro, HiTC, HiFive
- Reference datasets
- model organisms: human IMR90 (Dixon et al 2012), mouse CH12 (Rao et al 2014)
- livestock: none publicly available but several in production in pig, chicken, cattle and goat (FAANG French pilot project FRAGENCODE)

=> preliminary results: poster P0420


METHYLATION



B&DA Committee Bioinformatics and Data Analysis Methylation PAG January 2016

Presenter: Kyle Schachtschneider and Ole Madsen

- 35 members Methylation group (January 2016)
- Aiming at one group meeting every month
 - Decisions on pilot phase made
 - Data
 - Tissue(s)
 - Species
 - Pipelines to test
- Needed? Data to analyse

Methylation

PILOT FASE

DATA

- Whole genome bisulfite sequencing
- Reduced representation bisulfite sequencing (RRBS)
 - Aiming at 30X for both types of data

Tissue(s)

- Liver from (healthy) adults (maybe also from embryo)
 - Minimum of three biological replicates

Species

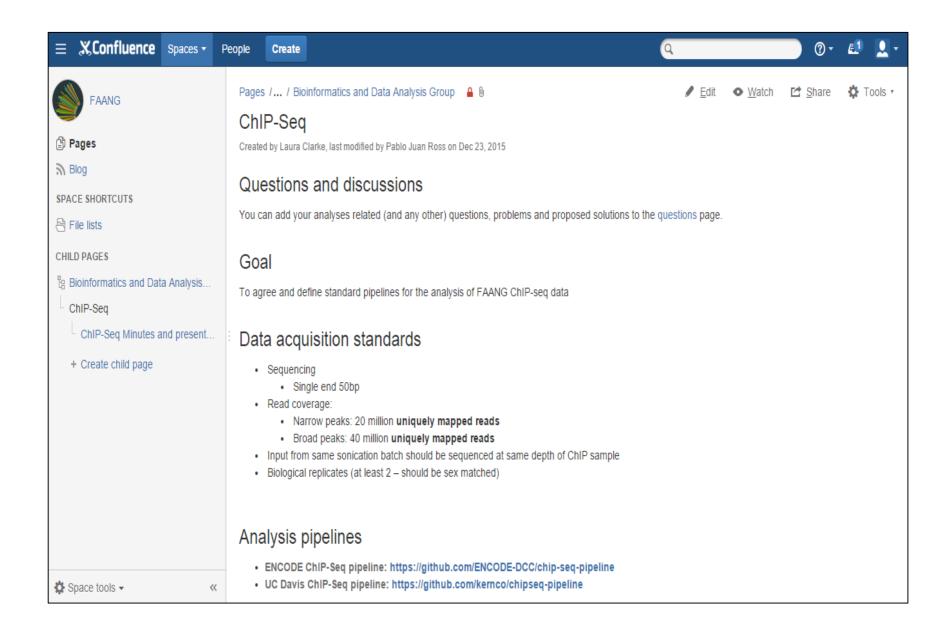
— Chicken (bird) and a mammal (Cow, pig, sheep?)

Pipelines

- BLUEPRINT pipeline (provided by Simon Heath)
- Toulouse pipeline (http://ng6.toulouse.inra.fr/, NG6)
- Other(s)....?

Methylation

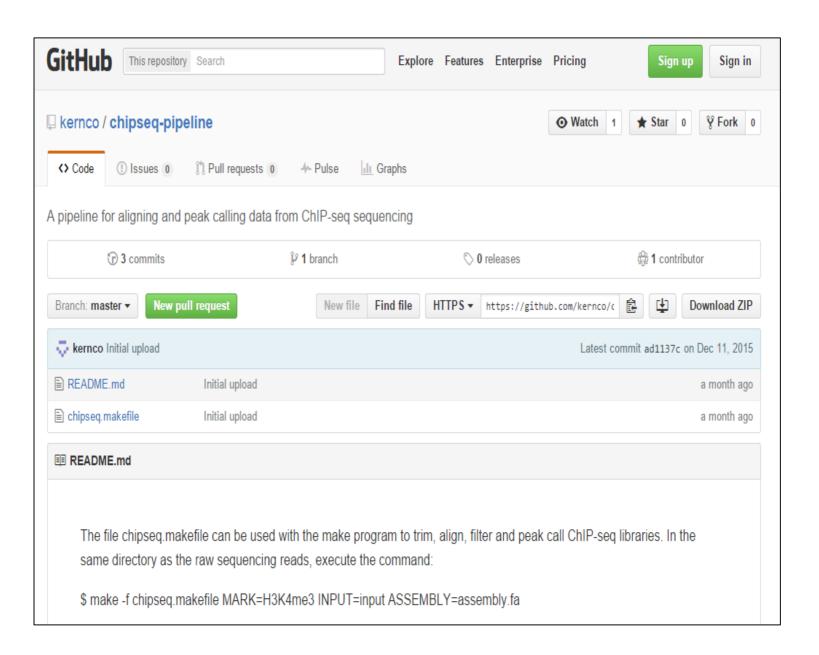
- PILOT FASE info available on Confluence
- Optimal fragment size/species RRBS (Toulouse)
 - Genomes used:
 - capra_hircus: CHIR_1.0
 - gallus gallus: Galgal4.80
 - mus_musculus: GRCm38.p4.81
 - sus scrofa: Sscrofa10.2.80
 - bos_taurus: UMD3.1.80
 - Enzyme used:
 - Msp1
 - Taq1
 - Both (double digestion)
- Software tools for Methylation analysis



CHIP-SEQ

ChIP-seq Data Analysis Standards

To agree and define standard pipelines for the analysis of FAANG ChIP-seq data


Data Acquisition Standards

- Sequencing
 - Single end 50 bp
- Read coverage:
 - Narrow peaks: 20 million uniquely mapped reads
 - Broad peaks: 40 million uniquely mapped reads
- Input from same sonication batch should be sequenced at similar depth of ChIP sample
- Biological replicates (at least 2 should be sex matched)

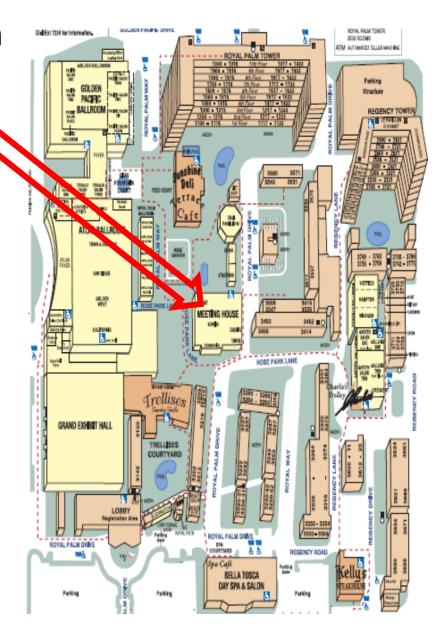
ChIP-seq analysis pipelines

- ENCODE ChIP-Seq pipeline: https://github.com/ENCODE-DCC/chip-seq-pipeline
- UC Davis ChIP-Seq pipeline: https://github.com/kernco/chipseq-pipeline
- Your pipeline: https://github.com/PLEASE SUBMIT ASAP

UC Davis

pipeline: https://github.com/kernco/chipseq-pipeline

Make file: \$ make -f chipseq.makefile MARK=H3K4me3 INPUT=input ASSEMBLY=assembly.fa


Requires 2 data files: ChIPed-sample.fastq and Input-sample.fastq; and a genome assembly.fa

- Trim raw reads (Illumina adapters and quality trimming-Trimmomatic)
- Align with BWA
- Mark duplicate alignments (picardtools)
- Peak calling using MACS2 (narrow and broad)
- IDR Irreproducible Discovery Rate

ChIP-seq Analysis group meeting

Tuesday 2PM – Devonshire Room

• Define a strategy to test ChIP-seq pipelines uploaded to the wiki

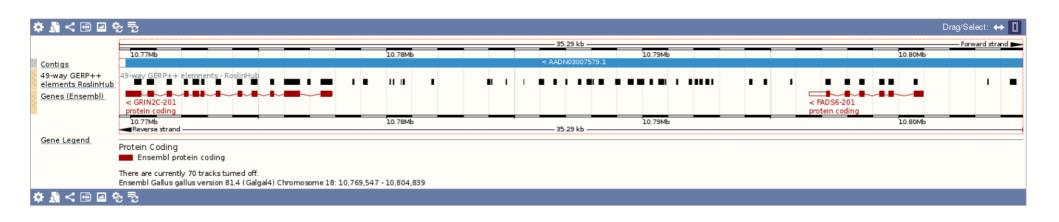
RNA

Define bioinformatics pipelines for:

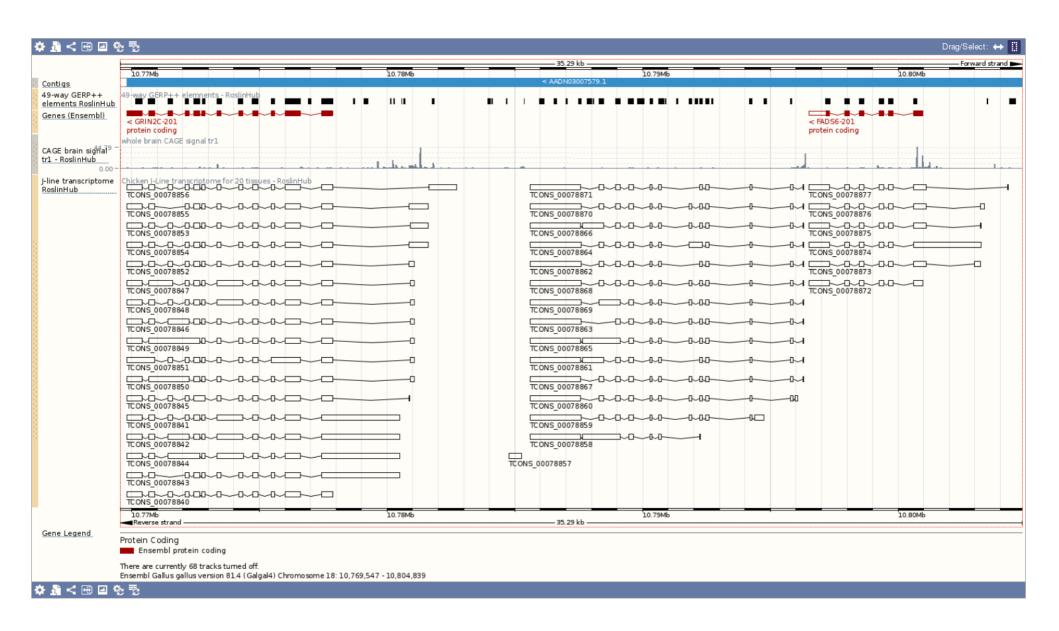
- Transcript discovery for animal genomes
 - □location
 - strand
 - □isoforms
 - □function
- Quantify gene expression

Short read

- □RNA-seq
- **□CAGE**
- □PolyA-seq
- Long read (PacBio)



- protein-coding
- pseudogene
- □miRNA
- \Box tRNA
- □lncRNA
- snoRNA
- □rRNA...



□Transcript biotypes in Ensembl v83 ■ 3prime_overlapping_ncrna ■ ambiguous_orf ■ antisense bidirectional_promoter_Incrna disrupted_domain disrupted_domain IG_C_gene IG_C_pseudogene IG_D_gene IG_J_gene IG_J_gene IG_Y_gene IG_Y_pseudogene IG_Y_pseudogene IIG_N_gene IRG_gene IRG_gene IRG_GENA IRISE_RNA IMISE_RNA □ Mt_rRNA ■ Mt_tRNA non_coding nonsense_mediated_decay non_stop_decay non_stop_decay polymorphic_pseudogene processed_pseudogene processed_transcript protein_coding pseudogene retained_intron 00009 ribozyme □ rRNÁ ■ scaRNA ■ sense_intronic □ sense_overlapping snoRNA snRNA sRNA TEC 40000 transcribed_processed_pseudogene transcribed_unitary_pseudogene transcribed_unprocessed_pseudogene □ translated_unprocessed_pseudogene TR_C_gene TR_D_gene TR_J_gene TR_J_pseudogene TR_V_gene TR_V_pseudogene unitary_pseudogene unprocessed_pseudogene vaultRNA 20000 0 sheep chicken human pig mouse cow

Data to benchmark
 Pipelines for transcript reconstruction

 Reference guided (example in FAANG wiki)
 De-novo (example in FAANG wiki)
 Mapping PacBio long read data

 Pipelines for quantification

 Performance comparison of software tools (e.g. Roberts & Watson, 2015) for RNA-seq
 CAGE

 Pipelines for functional classification

Informal meeting tomorrow

□Venue: **Dover Room**

□Time: **9:30-11:30**

Thank you!

Join us:

http://www.faang.org/groups?name= analysis

